Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Front Med (Lausanne) ; 11: 1370657, 2024.
Article in English | MEDLINE | ID: mdl-38741765

ABSTRACT

Introduction: Multiple targets are considered as the causes of ambient fine particulate matter [aerodynamic diameters of < 2.5 µm (PM2.5)] induced lung function injury. Qiju granules are derived from the traditional Chinese medicine (TCM) formula known as Qi-Ju-Di-Huang-Wan (Lycium, Chrysanthemum, and Rehmannia Formula, QJDHW), which has been traditionally used to treat symptoms such as cough with phlegm, dry mouth and throat, and liver heat. This treatment approach involves attenuating inflammation, oxidative stress, and fibrosis response. This study investigated the effects of Qiju granules on protecting lung function against PM2.5 exposure in a clinical trial. Methods: A randomized, double-blinded, and placebo-controlled trial was performed among 47 healthy college students in Hangzhou, Zhejiang Province in China. The participants were randomly assigned to the Qiju granules group or the control group based on gender. Clinical follow-ups were conducted once every 2 weeks during a total of 4 weeks of intervention. Real-time monitoring of PM2.5 concentrations in the individually exposed participants was carried out. Data on individual characteristics, heart rate (HR), blood pressure (BP), and lung function at baseline and during the follow-ups were collected. The effects of PM2.5 exposure on lung function were assessed within each group using linear mixed-effect models. Results: In total, 40 eligible participants completed the scheduled follow-ups. The average PM2.5 level was found to be 64.72 µg/m3 during the study period. A significant negative correlation of lung function with PM2.5 exposure concentrations was observed, and a 1-week lag effect was observed. Forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), maximal mid-expiratory flow (MMEF), forced expiratory flow at 75% of forced vital capacity (FVC) (FEF75), forced expiratory flow at 50% of FVC (FEF50), and forced expiratory flow at 25% of FVC (FEF25) were significantly decreased due to PM2.5 exposure in the control group. Small airway function was impaired more seriously than large airway function when PM2.5 exposure concentrations were increased. In the Qiju granules group, the associations between lung function and PM2.5 exposure were much weaker, and no statistical significance was observed. Conclusion: The results of the study showed that PM2.5 exposure was associated with reduced lung function. Qiju granules could potentially be effective in protecting lung functions from the adverse effects of PM2.5 exposure. Clinical Trial Registration: identifier: ChiCTR1900021235.

2.
Ecotoxicol Environ Saf ; 278: 116423, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705039

ABSTRACT

Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.

3.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474239

ABSTRACT

It is well known that extreme heat events happen frequently due to climate change. However, studies examining the direct health impacts of increased temperature and heat waves are lacking. Previous reports revealed that heatstroke induced acute lung injury and pulmonary dysfunction. This study aimed to investigate whether heat exposure induced lung fibrosis and to explore the underlying mechanisms. Male C57BL/6 mice were exposed to an ambient temperature of 39.5 ± 0.5 °C until their core temperature reached the maximum or heat exhaustion state. Lung fibrosis was observed in the lungs of heat-exposed mice, with extensive collagen deposition and the elevated expression of fibrosis molecules, including transforming growth factor-ß1 (TGF-ß1) and Fibronectin (Fn1) (p < 0.05). Moreover, epithelial-mesenchymal transition (EMT) occurred in response to heat exposure, evidenced by E-cadherin, an epithelial marker, which was downregulated, whereas markers of EMT, such as connective tissue growth factor (CTGF) and the zinc finger transcriptional repressor protein Slug, were upregulated in the heat-exposed lung tissues of mice (p < 0.05). Subsequently, cell senescence examination revealed that the levels of both senescence-associated ß-galactosidase (SA-ß-gal) staining and the cell cycle protein kinase inhibitor p21 were significantly elevated (p < 0.05). Mechanistically, the cGAS-STING signaling pathway evoked by DNA damage was activated in response to heat exposure (p < 0.05). In summary, we reported a new finding that heat exposure contributed to the development of early pulmonary fibrosis-like changes through the DNA damage-activated cGAS-STING pathway followed by cellular senescence.


Subject(s)
Pulmonary Fibrosis , Male , Mice , Animals , Pulmonary Fibrosis/metabolism , Hot Temperature , Mice, Inbred C57BL , Lung/pathology , Transforming Growth Factor beta1/metabolism , Epithelial-Mesenchymal Transition/physiology , Cellular Senescence , Nucleotidyltransferases/metabolism
4.
Environ Pollut ; 347: 123643, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38428793

ABSTRACT

Heat exposure induces excessive hyperthermia associated with systemic inflammatory response that leads to multiple organ dysfunction including acute lung injury. However, how heat impairs the lung remains elusive so far. We aimed to explore the underlying mechanism by focusing on leucine-rich repeat kinase 2 (LRRK2), which was associated with lung homeostasis. Both in vivo and in vitro models were induced by heat exposure. Firstly, heat exposure exerted core temperature (Tc) disturbance, pulmonary dysfunction, atelectasis, inflammation, impaired energy metabolism, and reduced surfactant proteins in the lung of mice. In addition, decreased LRRK2 expression and increased heat shock proteins (HSPs) 70 were observed with heat exposure in both the lung of mice and alveolar type II epithelial cells (AT2). Furthermore, LRRK2 inhibition aggravated heat exposure-initiated Tc dysregulation, injury in the lung and AT2 cells, and enhanced HSP70 expression. In conclusion, LRRK2 is involved in heat-induced acute lung injury and AT2 cell dysfunction.


Subject(s)
Acute Lung Injury , Lung Injury , Humans , Alveolar Epithelial Cells/metabolism , Lung , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism
5.
Sci Total Environ ; 921: 171101, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387595

ABSTRACT

Recent epidemiological and animal studies have indicated that ambient fine particulate matter (PM2.5) exposure during pregnancy is closely associated with intrauterine growth restriction (IUGR). However, the underlying mechanisms remain to be revealed. In this study, we found that gestational exposure to PM2.5 significantly decreased fetal weight and crown-rump length in mice, accompanied by insufficient placental trophoblast syncytialization and increased expression of progranulin (PGRN) in mice placenta. Administering PGRN neutralizing antibody to pregnant mice alleviated growth restriction and insufficient placental trophoblast syncytialization caused by PM2.5, accompanied with suppressed activation of the mTOR signaling pathway. Furthermore, in vitro experiments using human placental BeWo cells showed that 10 µg·mL-1 PM2.5 activated PGRN/mTOR signaling and suppressed forskolin-induced cell fusion, which was blocked by knockdown of PGRN. Taken together, our results demonstrated that PM2.5 exposure during pregnancy inhibited placental trophoblast syncytialization by activating PGRN/mTOR signaling, leading to abnormal placental development and IUGR. This study reveals a novel mechanism underlying the developmental toxicity of PM2.5 exposure during pregnancy.


Subject(s)
Placenta , Trophoblasts , Pregnancy , Female , Humans , Animals , Mice , Placenta/metabolism , Progranulins/toxicity , Progranulins/metabolism , Trophoblasts/metabolism , Signal Transduction , Fetal Development , Fetal Growth Retardation , TOR Serine-Threonine Kinases/toxicity , TOR Serine-Threonine Kinases/metabolism
6.
Ecotoxicol Environ Saf ; 270: 115849, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38134639

ABSTRACT

Recent research has highlighted a correlation between exposure to ambient fine particulate matter (PM2.5) and the development of systemic insulin resistance (IR) along with an elevated risk of diabetes. Ceramide has emerged as one of the pathogenic mechanisms contributing to IR. The inhibition of acid sphingomyelinase (ASMase) activity by desipramine (DES) has been shown to effectively reduce ceramide levels. In the present study, 24 female C57BL/6 N mice were randomized into one of the four groups: the filtered air exposure (FA) group, the concentrated PM2.5 exposure (PM) group, the concentrated PM2.5 treated with low-dose DES (DL) group, and the concentrated PM2.5 treated with high-dose DES (DH) group. The PM, DL and DH groups were exposed to PM2.5 for an 8-week period within a whole-body exposure system. The study encompassed extensive examinations of glucose homeostasis, liver lipid profile, ceramide pathway, and insulin signaling pathway. Our results demonstrated that PM2.5 exposure caused impaired glucose tolerance, elevated ceramide levels, increased phosphorylation PP2A, reduced Akt phosphorylation, and hindered GLUT2 expression. Remarkably, DES administration mitigated PM2.5-induced IR by effectively lowering ceramide levels. In conclusion, the reduction of ceramide levels by DES may be a promising therapeutic strategy for coping PM2.5-induced IR.


Subject(s)
Air Pollutants , Insulin Resistance , Female , Animals , Mice , Particulate Matter/toxicity , Desipramine/pharmacology , Mice, Inbred C57BL , Liver , Air Pollutants/toxicity
7.
Molecules ; 28(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894583

ABSTRACT

As a common emerging environmental pollutant, microplastics (MPs) have been detected in a variety of environmental media and human bodies. The potential toxic effects and mechanisms of MPs need to be revealed urgently. MPs can be deposited in the kidney, and exposure to high doses of MPs can cause nephrotoxicity in experimental animals. In this study, we investigated the effects of exposure to polystyrene microplastics (PS-MPs) at environmentally relevant doses (0.1 and 1 mg/L) on kidney structure, function, and transcriptome in mice. We found that mice exposed to PS-MPs in drinking water for eight weeks had no change in body weight or kidney coefficient. PS-MPs administration decreased the levels of blood urea nitrogen (BUN) in mice, while serum creatinine (CRE) and uric acid (UA) concentrations were unaffected. Through using periodic acid-Schiff (PAS) and Masson staining, we discovered that the glomerular tuft area increased in the PS-MP-treated mice, while the degree of renal fibrosis remained unchanged. Furthermore, renal cortex transcriptomic analysis identified 388 and 303 differentially expressed genes (DEGs) in the 0.1 and 1 mg/L dose groups, respectively. The DEGs were highly enriched in mitochondrial-related terms and pathways of thermogenesis and oxidative phosphorylation. Moreover, protein-protein interaction (PPI) network analysis revealed that cytochrome b-c1 complex subunit 10 (UQCR11) and cytochrome c oxidase subunit 3 (MT-CO3) were important node proteins. These findings suggest that environmental exposure to MPs can cause abnormalities in renal structure and filtration function and that long-term exposure to MPs may be a risk factor for renal disease.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Animals , Mice , Transcriptome , Microplastics/toxicity , Kidney , Kidney Glomerulus , Polystyrenes/toxicity
9.
Environ Sci Technol ; 57(42): 15835-15845, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37831419

ABSTRACT

To investigate the association of long-term exposure to ambient air pollution with the risk of allergic rhinitis (AR), we performed a longitudinal analysis of 379,488 participants (47.4% women) free of AR at baseline in the UK Biobank. The annual average concentrations of PM2.5, PMcoarse, PM10, NO2, and NOx were estimated by land use regression models. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). A weighted polygenic risk score was constructed. During a median follow-up period of 12.5 years, 3095 AR cases were identified. We observed significant associations between the risk of AR and PM2.5 (HR: 1.51, 95% CI: 1.27-1.79, per 5 µg/m3), PMcoarse (HR: 1.28, 95% CI: 1.06-1.55, per 5 µg/m3), PM10 (HR: 1.45, 95% CI: 1.20-1.74, per 10 µg/m3), NO2 (HR: 1.14, 95% CI: 1.09-1.19, per 10 µg/m3), and NOx (HR: 1.10, 95% CI: 1.05-1.15, per 20 µg/m3). Moreover, participants with high air pollution combined with high genetic risk showed the highest risk of AR, although no multiplicative or additive interaction was observed. In conclusion, long-term exposure to air pollutants was associated with an elevated risk of AR, particularly in high-genetic-risk populations, emphasizing the urgent need to improve air quality.


Subject(s)
Air Pollutants , Air Pollution , Rhinitis, Allergic , Humans , Female , Male , Particulate Matter/analysis , Prospective Studies , Nitrogen Dioxide/analysis , Cohort Studies , Environmental Exposure/analysis , Air Pollution/analysis , Air Pollutants/analysis , Rhinitis, Allergic/epidemiology
10.
Chemosphere ; 344: 140369, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802477

ABSTRACT

Pregnancy is a unique physiological stage for females as well as a vulnerable period for pollutant exposure. The effect of gestational ambient fine particulate matter (PM2.5) exposure on maternal lipid metabolism during pregnancy is rarely observed, and the mechanism is unknown. In the current study, pregnant C57BL/6 mice were randomly assigned to either ambient PM2.5 or filtered air exposure chambers since gestational day (GD) 0. Meanwhile, non-pregnant female mice were housed as controls in each exposure chamber. PM2.5 exposure exerted no significant effect on body weight gain or the body composition during pregnancy. Pregnant mice exposed to PM2.5 demonstrated improved glucose tolerance, whereas non-pregnant mice showed an increased fasting blood glucose level after PM2.5 exposure with no alterations in glucose tolerance. PM2.5 exposure exerted no significant effect on total lipid content in serum during pregnancy, while an increased serum total lipid level was found in non-pregnant mice exposed to PM2.5. PM2.5 exposure had no effect on total liver lipid levels, it increased several triacylglycerol (TAG) species and total cholesterol esters (CEs) in pregnant mice but lowered a considerable amount in non-pregnant mice' livers. Furthermore, gestational exposure to PM2.5 enhanced the expression of key enzymes in fatty acid uptake, de novo lipid synthesis, and ß oxidation, and inhibited molecules for lipid export in mice liver. Conversely, PM2.5 exposure upregulated proteins involved in hepatic lipolysis and lipid export in non-pregnant mice. These results suggest that the interference of PM2.5 exposure during pregnancy on the lipid metabolism, particularly the hepatic lipid metabolism, differs from that during non-pregnancy. This study provides toxicological evidence that PM2.5 exposure during pregnancy disrupts the lipid metabolism of the liver and provides a basis for protecting vulnerable populations.


Subject(s)
Air Pollutants , Air Pollution , Maternal Exposure , Animals , Female , Mice , Pregnancy , Air Pollutants/toxicity , Glucose , Lipid Metabolism , Lipids , Liver , Maternal Exposure/adverse effects , Mice, Inbred C57BL , Particulate Matter/analysis
11.
Environ Health Perspect ; 131(10): 107002, 2023 10.
Article in English | MEDLINE | ID: mdl-37792558

ABSTRACT

BACKGROUND: Previous evidence has identified exposure to fine ambient particulate matter (PM2.5) as a leading risk factor for adverse health outcomes. However, to date, only a few studies have examined the potential association between long-term exposure to PM2.5 and bone homeostasis. OBJECTIVE: We sought to examine the relationship between long-term PM2.5 exposure and bone health and explore its potential mechanism. METHODS: This research included both observational and experimental studies. First, based on human data from UK Biobank, linear regression was used to explore the associations between long-term exposure to PM2.5 (i.e., annual average PM2.5 concentration for 2010) and bone mineral density [BMD; i.e., heel BMD (n=37,440) and femur neck and lumbar spine BMD (n=29,766)], which were measured during 2014-2020. For the experimental animal study, C57BL/6 male mice were assigned to ambient PM2.5 or filtered air for 6 months via a whole-body exposure system. Micro-computed tomography analyses were applied to measure BMD and bone microstructures. Biomarkers for bone turnover and inflammation were examined with histological staining, immunohistochemistry staining, and enzyme-linked immunosorbent assay. We also performed tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay to determine the effect of PM2.5 exposure on osteoclast activity in vitro. In addition, the potential downstream regulators were assessed by real-time polymerase chain reaction and western blot. RESULTS: We observed that long-term exposure to PM2.5 was significantly associated with lower BMD at different anatomical sites, according to the analysis of UK Biobank data. In experimental study, mice exposed long-term to PM2.5 exhibited excessive osteoclastogenesis, dysregulated osteogenesis, higher tumor necrosis factor-alpha (TNF-α) expression, and shorter femur length than control mice, but they demonstrated no significant differences in femur structure or BMD. In vitro, cells stimulated with conditional medium of PM2.5-stimulated macrophages had aberrant osteoclastogenesis and differences in the protein/mRNA expression of members of the TNF-α/Traf6/c-Fos pathway, which could be partially rescued by TNF-α inhibition. DISCUSSION: Our prospective observational evidence suggested that long-term exposure to PM2.5 is associated with lower BMD and further experimental results demonstrated exposure to PM2.5 could disrupt bone homeostasis, which may be mediated by inflammation-induced osteoclastogenesis. https://doi.org/10.1289/EHP11646.


Subject(s)
Air Pollutants , Biological Specimen Banks , Animals , Humans , Male , Mice , Air Pollutants/toxicity , Air Pollutants/analysis , Homeostasis , Inflammation/chemically induced , Mice, Inbred C57BL , Particulate Matter/toxicity , Particulate Matter/analysis , United Kingdom , X-Ray Microtomography , Observational Studies as Topic
12.
Circ Res ; 133(6): 508-531, 2023 09.
Article in English | MEDLINE | ID: mdl-37589160

ABSTRACT

BACKGROUND: Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS: Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS: The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS: By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.


Subject(s)
Hypertension, Pulmonary , Vascular Diseases , Humans , Mice , Rats , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/prevention & control , Endothelial Cells , Mitochondria , Disease Models, Animal , Endothelium , Ubiquitins , Membrane Proteins , Mitochondrial Proteins
13.
Toxics ; 11(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37112549

ABSTRACT

Heavy metals play an important endocrine-disrupting role in the health consequences. However, the endocrine-disrupting mechanism of heavy metals is unclear. There are long-term and low-level metal/element exposure scenes for the human body in real life. Therefore, animal models exposed to high doses of heavy metals may not provide key information to elucidate the underlying pathogeny of human diseases. This review collects current knowledge regarding the endocrine-disrupting roles of heavy metals such as lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), copper (Cu), zinc (Zn), and manganese (Mn), summarizes the possible molecular mechanisms of these endocrine-disrupting chemicals (EDCs), and briefly evaluates their endocrine toxicity on animals and humans.

14.
Free Radic Biol Med ; 204: 20-27, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37094755

ABSTRACT

Acetylhydrazine (AcHZ), a major human metabolite of the widely-used anti-tuberculosis drug isoniazid (INH), was considered to be responsible for its serious hepatotoxicity and potentially fatal liver injury. It has been proposed that reactive radical species produced from further metabolic activation of AcHZ might be responsible for its hepatotoxicity. However, the exact nature of such radical species remains not clear. Through complementary applications of ESR spin-trapping and HPLC/MS methods, here we show that the initial N-centered radical intermediate can be detected and identified from AcHZ activated by transition metal ions (Mn(III)Acetate and Mn(III) pyrophosphate) and myeloperoxidase. The exact location of the radical was found to be at the distal-nitrogen of the hydrazine group by 15N-isotope-labeling techniques via using 15N-labeled AcHZ we synthesized. Additionally, the secondary C-centered radical was identified unequivocally as the reactive acetyl radical by complementary applications of ESR spin-trapping and persistent radical TEMPO trapping coupled with HPLC/MS analysis. This study represents the first detection and unequivocal identification of the initial N-centered radical and its exact location, as well as the reactive secondary acetyl radical. These findings should provide new perspectives on the molecular mechanism of AcHZ activation, which may have potential biomedical and toxicological significance for future research on the mechanism of INH-induced hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Hydrazines , Humans , Hydrazines/metabolism , Isoniazid/metabolism , Antitubercular Agents/metabolism , Electron Spin Resonance Spectroscopy , Free Radicals
15.
Mater Today Bio ; 19: 100588, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36896414

ABSTRACT

Organic erectile dysfunction (ED) is a type of sexual disorder in men that is usually associated with illness, surgical injury, normal aging and has a high incidence across the globe. And the essence of penile erection is a neurovascular event regulated by a combination of factors. Nerve and vascular injury are the main causes of erectile dysfunction. Currently, the main treatment options for ED include phosphodiesterase type 5 inhibitors (PDE5Is), intracorporeal injections and vacuum erection devices (VEDs), which are ineffective. Therefore, it is essential to find an emerging, non-invasive and effective treatment for ED. The histopathological damage causing ED can be improved or even reversed with hydrogels, in contrast to current therapies. Hydrogels have many advantages, they can be synthesized from various raw materials with different properties, possess a definite composition, and have good biocompatibility and biodegradability. These advantages make hydrogels an effective drug carrier. In this review, we began with an overview of the underlying mechanisms of organic erectile dysfunction, discussed the dilemmas of existing treatments for ED, and described the unique advantages of hydrogel over other approaches. Then emphasizing the progress of research on hydrogels in the treatment of ED.

16.
Heliyon ; 9(3): e13662, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36879975

ABSTRACT

Purpose: The relationship between the TIR and mortality may be influenced by the presence of diabetes and other glycemic indicators. The purpose of this study was to investigate the relationship between TIR and in-hospital mortality in diabetic and non-diabetic patients in ICU. Methods: A total of 998 patients with severe diseases in the ICU were selected for this retrospective analysis. The TIR is defined as the percentage of time spent in the target blood glucose range of 3.9-10.0 mmol/L within 24 h. The relationship between TIR and in-hospital mortality in diabetic and non-diabetic patients was analyzed. The effect of glycemic variability was also analyzed. Results: The binary logistic regression model showed that there was a significant association between the TIR and the in-hospital death of severely ill non-diabetic patients. Furthermore, TIR≥70% was significantly associated with in-hospital death (OR = 0.581, P = 0.003). The study found that the coefficient of variation (CV) was significantly associated with the mortality of severely ill diabetic patients (OR = 1.042, P = 0.027). Conclusions: Both diabetic and non-diabetic critically ill patients should control blood glucose fluctuations and maintain blood glucose levels within the target range, it may be beneficial in reducing mortality.

17.
Environ Pollut ; 324: 121347, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36858098

ABSTRACT

Emerging evidence suggests that exposure to airborne fine particulate matter (PM2.5) is closely related to disturbances in hepatic lipid metabolism. However, no systematic study assessed the age vulnerability in effects of PM2.5 exposure on metabolism, and the potential mechanisms remain unknown. This study aimed to investigate the metabolic susceptibility of different life stages to PM2.5 exposure, and to evaluate the underlying molecular mechanisms. Male C57BL/6 mice at three life phases (young, adult, and middle-aged) were exposed simultaneously to concentrated ambient PM2.5 or filtered air (FA) for 8 weeks using a whole-body inhalational exposure system. The average daily PM2.5 concentrations to which mice were actually exposed were 90.71 ± 7.99 µg/m3. The body weight, total food utilization, body composition, glucose metabolic homeostasis of the mice were evaluated. At euthanasia, serum and liver samples were collected to measure lipid profiles and hepatic function. H&E and Oil Red O staining were used to assess the liver cellular structure and hepatic lipid deposition. Transcriptomics and lipidomics were performed to determine the differentially expressed genes and lipid metabolites in the liver. Quantitative RT-PCR and immunoblots were performed to verify the transcriptomics and explore the mechanism for metabolic susceptibility. PM2.5 exposure led to reductions in body weight gain, total food utilization, and fat mass in middle-aged mice but not in young or adults. Exposure to PM2.5 reduced hepatic lipid deposition by enhancing lipolysis and inhibiting the glycerol-3-phosphate (G3P) pathway of hepatic lipogenesis. Furthermore, PM2.5 exposure attenuated hepatic fatty acid metabolism and primary bile acid biosynthesis. Finally, PM2.5 exposure dysregulated hepatic phospholipid metabolism, as evidenced by increased glycerophospholipid synthesis and disturbed sphingolipid metabolism. Therefore, middle-aged male mice were more vulnerable to PM2.5 exposure with double-edged effects, improved metabolism and hepatic TG accumulation but inhibited hepatic fatty acid and bile acid metabolism and dysregulated phospholipid metabolism.


Subject(s)
Air Pollutants , Lipid Metabolism , Mice , Male , Animals , Mice, Inbred C57BL , Liver/metabolism , Particulate Matter/analysis , Body Weight , Bile Acids and Salts/metabolism , Lipids/analysis , Air Pollutants/analysis
18.
Ecotoxicol Environ Saf ; 255: 114797, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36933486

ABSTRACT

The consumption of disposable materials is booming with the rapid development of urbanization and industrialization, which may inevitably cause the release of toxic and harmful substances during use of them in daily life. This study was to estimate element levels such as Beryllium (Be), Vanadium (V), Zinc (Zn), Manganese (Mn), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Cobalt (Co), Antimony (Sb), Barium (Ba), Lead (Pb), Iron (Fe), Copper (Cu), and Selenium (Se) in leachate and subsequently assess the health risk of exposure to those disposable products such as paper and plastic food containers. We found that a large amount of metals was released from disposable food containers in hot water, and the order of metal concentration is Zn > Ba > Fe > Mn > Ni > Cu > Sb > Cr > Se > Be > Pb > Co > V > Cd. Additionally, the hazard quotient (HQ) of metals in young adults were less than 1, and were decreased in the order of Sb > Fe > Cu > Be > Ni > Cr > Pb > Zn > Se > Cd > Ba > Mn > V > Co. Furthermore, the excess lifetime cancer risk (ELCR) results of Ni and Be indicated that chronic exposure to Ni and Be may have a non-negligible carcinogenic risk. These findings suggest that potential health risk of metals may exist for the individuals to use disposable food containers under high temperature environment.


Subject(s)
Cadmium , Metals, Heavy , Humans , Food Packaging , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis , Chromium , Nickel , Manganese , Zinc , Cobalt/toxicity , Barium , Risk Assessment/methods , Environmental Monitoring
19.
J Orthop Surg Res ; 18(1): 222, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944974

ABSTRACT

BACKGROUND: Due to the poor specificity of D-dimer, more accurate thrombus biomarkers are clinically needed to improve the diagnostic power of VTE. METHODS: The plasma samples were classified into low-risk group (n = 6) and high-risk group (n = 6) according to the Caprini Thrombosis Risk Assessment Scale score. Data-independent acquisition mass spectrometry (DIA-MS) was performed to identify the proteins in the 12 plasma samples. Bioinformatics analysis including volcano plot, heatmap, KEGG pathways and chord diagram analysis were drawn to analyze the significantly differentially expressed proteins (DEPs) between the two groups. Then, another 26 plasma samples were collected to verify the key proteins as potential biomarkers of VTE in orthopedic surgery patients. RESULTS: A total of 371 proteins were identified by DIA-MS in 12 plasma samples. Volcano plotting showed that there were 30 DEPs. KEGG pathway enrichment analysis revealed that the DEPs were majorly involved in the blood coagulation pathway. The chord diagram analysis demonstrated that proteins SAA1, VWF, FLNA, ACTB, VINC, F13B, F13A and IPSP in the DEPs were significantly related to blood coagulation. VWF and F13B were selected for validation experiments. ELISA test showed that, as compared with those in the low-risk group, the level of VWF in the high-risk sera was significantly increased. CONCLUSIONS: The level of VWF in the high-risk group of thrombosis after orthopedic surgery was significantly higher than that in the low-risk group of preoperative thrombosis, suggesting that VWF may be used as a potential thrombus biomarker in orthopedic surgery patients.


Subject(s)
Orthopedic Procedures , Thrombosis , Venous Thromboembolism , Humans , von Willebrand Factor/analysis , von Willebrand Factor/metabolism , Proteomics , Risk Assessment , Biomarkers , Thrombosis/diagnosis , Thrombosis/etiology , Orthopedic Procedures/adverse effects
20.
Sci Total Environ ; 854: 158704, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108838

ABSTRACT

Global climate warming has drawn worldwide attention. However, the health impact of heat exposure is still controversial. This study aimed to explore the exact effects and sex differential vulnerability under intermittent heat exposure (IHE) patterns and tried to elucidate the potential mechanisms by which IHE modulated hepatic lipid and glucose homeostasis. Both female and male C57BL/6 N mice were randomly allocated to control group (22 ± 1 °C) or intermittent heat group (37 ± 1 °C for 6 h) for 9 consecutive days followed by 4-day recovery at 22 ± 1 °C in a whole-body exposure chamber. Male mice, but not female, being influenced by IHE with decreased body weight, improved insulin sensitivity and glucose tolerance. Next, the levels of hepatic triglyceride (TG) were decreased and free fatty acid (FFA) increased in male mice exposed to intermittent heat, accompanied with upregulated expression of anti-oxidative enzymes in the liver. In addition, IHE led to enhanced lipid catabolism in male mice by inducing fatty acid uptake, lipid lipolysis, mitochondrial/peroxisomal fatty acid oxidation and lipid export. And glycolysis and glucose utilization were induced by IHE in male mice as well. Mechanically, heat shock protein 70 (HSP70)/insulin receptor substrate 1 (IRS1)/AMPKα pathways were activated in response to IHE. These findings provide new evidence that IHE sex-dependently enhanced the metabolism of lipid and glucose in male mice through HSP70/IRS1/AMPKα signaling.


Subject(s)
Liver , Sex Characteristics , Female , Male , Mice , Animals , Mice, Inbred C57BL , Liver/metabolism , Glucose/metabolism , Fatty Acids/metabolism , Lipid Metabolism , HSP70 Heat-Shock Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...